

GERALD R. Ford School OF PUBLIC POLICY

The Simple Analytics of Trade Creation and Diversion

Alan V. Deardorff University of Michigan Rishi R. Sharma Colgate University

For presentation at

Conference on International Economic Integration:

Firms, Workers, and Policies

Universität Tübingen May 22-23, 2019

To Willi

- Known since his year at Michigan in the 1980s
- Visited him and Gabi in Essen, Linz, and Tübingen
- Have admired his work throughout
- Delighted to be here to honor him

GERALD

R

0 F

PUBLIC

POLICY

Ford

My Topic

• FTAs

GERALD R.

0 F

PUBLIC POLICY

Ford

School

• Willi has touched on these throughout his career, as have most of us in the trade field

Outline

- Background
- 3-country case, in graphs
- Somewhat more general case, in equations
- 4-country case, in graphs

GERALD

R

0 F

PUBLIC POLICY

Ford

Background

- Viner's (1950) trade creation and trade diversion are usually illustrated with
 - Constant costs
 - 2-country FTA or CU plus rest of world
- We'll look here at cases with
 - Upward sloping supplies
 - And in the last case, an FTA with pre-existing other FTA

For

simplicity

GERALD R. Ford School OF PUBLIC POLICY

3-country case*

- Three countries, importer A, and exporters B, and C
- Export supply and import demands are linear
- Countries B and C are identical
- Two equilibria
 - 0: MFN specific tariff t on exports of both B and C
 - 1: FTA of A and B:
 - tariff t on exports of C;
 - zero tariff on exports of B

*Much of this is an elaboration of material in World Trade Organization, "Causes and Effects of PTAs: Is it all about preferences?", Ch. C: *World Trade Report 2011*, pp. 92-121.

www.fordschool.umich.edu

7

MFN Equilibrium

www.fordschool.umich.edu

GER

FTA Equilibrium

GER

TC & TD, another View

GER

Welfare Effects on Country A **Export Supplies** Import Market $p_{\mathbf{L}}^{A}$ Net gain of A's p^{A} Tariff revenue X^{Bt}, X^{Ct} X^{Bf}, X^{Cf} private sector $X^{Bt} + X^{Ct}$ lost from B p_0^A $+ X^{Ct}$ p_1^A \mathcal{M}^A t a^B ТС $= a^{C}$ $X_1^C X_0^B$ X_1^B Q $M_0^A M_1^A$ Q $= X_0^C$

See immediately that country A

- Gains from trade creation
- Loses from trade diversion
- As well as from lost revenue from country B

Welfare Effects on Countries B and C

These add up, with much cancellation to yield the following:

These add up, with much cancellation to yield the following:

These add up, with much cancellation to yield the following:

Welfare Effects on the World **Export Supplies** Import Market $p^A_{\scriptscriptstyle \rm I\!\!I}$ p^A X^{Bt}, X^{Ct} X^{Bf}, X^{Cf} $X^{Bt} + X^{Ct}$ p_0^A X^{Bf} $+ X^{Ct}$ p_1^A \mathcal{M}^A t a^B TC $= a^{c}$ $\begin{array}{l} X_1^C X_0^B \\ = X_0^C \end{array}$ X_1^B Q $M_0^A M_1^A$ Q

These add up, with much cancellation to yield the following:

These add up, with much cancellation to yield the following:

www.fordschool.umich.edu

18

These add up, with much cancellation to yield the following:

Welfare Effects on the World

These add up, with much cancellation to yield the following:

Welfare Effects on the World

Why the Loss from Trade Diversion

- Loss is an area, product of the price change and the quantity of trade diversion, with the latter depending on the former.
- So the loss rises with the <u>square</u> of trade diversion.

- Four countries:
 - Importer A
 - Exporters B, C, and D
- Export supply and import demands are linear
- Three equilibria
 - 0: MFN tariff t on exports of B, C, and D
 - 1: FTA of A and D:
 - Tariff t on exports of B and C;
 - Zero tariff on exports of D
 - 2: FTA of A with B, keeping FTA with D
 - Tariff t on exports of C only
 - Zero tariff on exports of B and D
- Consider only cases with $X^i > 0, i = B, C, D$

Exports:

GERALD R.

0 F

PUBLIC POLICY

Ford

School

$$X^{i} = b^{i} (p^{i} - a^{i}), \qquad i = B, C, D, \qquad p^{i} \ge a^{i}$$

Imports:

$$M^A = b^A (a^A - p^A), \qquad p^A \leq a^A$$

Equilibrium:

 $M^A = X^B + X^C + X^D$

Let:

GERALD R.

0 F

PUBLIC POLICY

Ford

School

$$\beta = b^{A} + b^{B} + b^{C} + b^{D}$$

$$\theta^{i} = b^{i}/\beta$$

$$\gamma = \theta^{A}a^{A} + \theta^{B}a^{B} + \theta^{C}a^{C} + \theta^{D}a^{D}$$

Then solution is: $p^{A} = \gamma + \theta^{B}t^{B} + \theta^{C}t^{C} + \theta^{D}t^{D}$

www.fordschool.umich.edu

26

- With more assumptions, *bⁱ* are proportional to country size
 - (See paper)
- Therefore θ^i is country *i*'s share of world economy
 - (This is not really right, as it assumes both demanders and suppliers in proportion to population. Exporters will in fact have more firms, and thus greater weight, than importers.)

GERALD

R

0

Т

PUBLIC

POLICY

Ford

Effect of new FTA between A and B (in presence of A's FTA with D) Let Δ be change from equilibrium 1 to equilibrium 2 $\Delta p^A = -\theta^B t$

Thus price in A falls by a fraction of the tariff, in proportion to size of new partner compared to world. Country B's price rises by the rest of the tariff $\Delta p^B = (1 - \theta^B)t$

Because A's tariff on C and D does not change $\Delta p^{C} = \Delta p^{D} = \Delta p^{A} = -\theta^{B}t$

www.fordschool.umich.edu

GERALD

R

0 F

PUBLIC

POLICY

Ford

From the price changes, one derives the following changes in quantities of trade:

 $\Delta M^A = \theta^B b^A t > 0$

 $\Delta X^B = \theta^B (b^A + b^C + a^D) t > 0$

 $\Delta X^C = -\theta^B b^C t < 0$

 $\Delta X^D = -\theta^B b^D t < 0$

www.fordschool.umich.edu

GERALD

R

0 F

PUBLIC

POLICY

Ford

As must be from market equilibrium

 $\Delta X^B = \Delta M^A - \Delta X^C - \Delta X^D$

Thus the added exports of the partner country include the new imports of country A plus the reduced exports of countries C and D. The latter trade may be said to be "diverted," but we label $-\Delta X^{C}$ as "trade diversion"

and

 $-\Delta X^D$ as "trade reversion"

because it is <u>reversal</u> of trade diversion from the prior FTA.

GERALD R

0 F

PUBLIC

POLICY

Ford

Thus

GERALD R.

0 F

PUBLIC POLICY

Ford

School

Trade Creation = $TC = \theta^B b^A t > 0$

Trade Diversion = $TD = \theta^B b^C t > 0$

Trade Reversion = $TR = \theta^B b^D t > 0$

Lost tariff

The Model

Welfare effects of new FTA

Country A (home): $\Delta W^{A} = (M_{0}^{A}/b^{A} + \theta^{B} t/2)TC - tTD - tX_{0}^{B}$

Country B (new partner): $\Delta W^{B} = \Delta NS^{B} = \left[X_{0}^{B} + \frac{1}{2}(TC + TD + TR)\right](1 - \theta^{B})t$ Country C (outside world): $\Delta W^{C} = \left[-X_{0}^{C} + \frac{TD}{2}\right]\theta^{B}t$ Country D (old partner): $\Delta W^{D} = \left[-X_{0}^{D} + \frac{TR}{2}\right]\theta^{B}t$

Welfare effects of new FTA on the World

World (A+B+C+D):

$$\Delta W^W = \frac{1}{2}TCt + \frac{1}{2}(TR - TD)t$$

4-country case

- Three countries, importer A, and exporters B, C, and D
- Export supply and import demands are linear
- Countries B, C, and D are identical
- Two equilibria

simplicity

For

- 1: MFN tariff t on exports of both B and C
 - Zero tariff on exports of old FTA partner D
- 2: New FTA of A and B:
 - tariff t on exports of C only;
 - zero tariff on exports of two FTA partners B and D

GERALD

R

0

Т

PUBLIC

POLICY

Ford

Export Supplies

GER

Equilibrium 1: A has FTA with 1 country, D

GER

Changes in Trade from expanding FTA to Country B

38

GER

Trade Creation (TC), Diversion (TD), and Reversion (TR)

GE

Trade Creation (TC), Diversion (TD), and Reversion (TR)

Note that ΔX^B , while a gain to Country B, is the sum of *TC*, *TD*, & *TR*, since $\Delta X^B = \Delta M^A - \Delta X^C - \Delta X^D$

www.fordschool.umich.edu

G

Note that trade reversion does not appear to affect A's welfare. I suspect this is an artifact of making export supplies from B and D the same.

Wolfaro Effoct on Co

GER

Welfare Effect on Country C

GER

Welfare Effect on Country D

I claim that these gains and losses mostly cancel out to reduce to the following:

45

GER

Welfare Effects on World

GER

GER

GER

GER

GER

GER

GER

GER

G

G

G

G

GER

4-country case

• Result:

GERALD

R

0

Т

PUBLIC

POLICY

Ford

School

- World welfare rises with second FTA, by amount depending on trade creation and the tariff
- Recall from model:

$$\Delta W^W = \frac{1}{2}TCt + \frac{1}{2}(TR - TD)t$$

• Here, because we've assumed countries B and D are the same, *TR=TD*

$$\Delta W^W = \frac{1}{2}TCt$$

4-country case

- In general, $TR \neq TD$
- Which is larger depends just on country size, size both face the same price change.

$$\Delta W^W = \frac{1}{2}TCt + \frac{1}{2}(TR - TD)t$$

- If the new partner is smaller than the old, TR > TD, and world gain will be larger
- If new partner is bigger than old, then *TR* < *TD* and world gain will be smaller and perhaps a loss.

GERALD

R

0 F

PUBLIC

POLICY

Ford

Conclusion

- Analysis of FTAs shouldn't treat each independently of FTAs that already exist
- Sequencing of FTAs can matter.

GERALD

R

0 F

PUBLIC POLICY

Ford

GERALD R. Ford OF PUBLIC POLICY